Prediction of Solid Propellant Characteristic Signal Based on Improved BP Network
نویسندگان
چکیده
منابع مشابه
Regional GDP Prediction Based on Improved BP Neural Network Model
In this paper, an improved BP neural network model is proposed. In the model, the momentum factor can improve the training speed and avoid falling into local minimum. Steepness factor and adaptive learning rate can improve the convergence speed. The genetic algorithm is used to solve the problem of low training speed, low accuracy of prediction and easy to fall into local minimum of BP neural n...
متن کاملNetwork Traffic Prediction based on Particle Swarm BP Neural Network
The traditional BP neural network algorithm has some bugs such that it is easy to fall into local minimum and the slow convergence speed. Particle swarm optimization is an evolutionary computation technology based on swarm intelligence which can not guarantee global convergence. Artificial Bee Colony algorithm is a global optimum algorithm with many advantages such as simple, convenient and str...
متن کاملAdaptive Network Traffic Prediction Algorithm based on BP Neural Network
With the rapid development of Internet technology, the network now has a large size and high complexity, and consequently the network management is becoming increasing difficult and complexity, so traffic forecast play a more and more role in network management. With a large amount of real traffic data collected from the actual network, an adaptive network traffic prediction algorithm based on ...
متن کاملChaotic Prediction for Traffic Flow of Improved BP Neural Network
Abstract A prediction algorithm for traffic flow prediction of BP neural based on Differential Evolution (DE) is proposed to overcome the problems such as long computing time and easy to fall into local minimum by combing DE and neural network. In the algorithm, DE is used to optimize the thresholds and weights of BP neural network, and the BP neural network is used to search for the optimal so...
متن کاملEndpoint Prediction of BOF Steelmaking based on BP Neural Network Combined with Improved PSO
This paper concerns the endpoint estimation of the basic oxygen furnace (BOF) steel making process. More specifically, a back propagation (BP) neural network is employed to estimate the endpoint carbon content and the endpoint temperature of BOF, and an improved particle swarm optimization (PSO) algorithm is proposed to optimize the prediction model for improving the accuracy of the endpoint pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: DEStech Transactions on Computer Science and Engineering
سال: 2018
ISSN: 2475-8841
DOI: 10.12783/dtcse/mso2018/20513